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IMPORTANCE The use of genome-wide tests to provide molecular diagnosis for individuals
with autism spectrum disorder (ASD) requires more study.

OBJECTIVE To perform chromosomal microarray analysis (CMA) and whole-exome
sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular
diagnostic yield of these tests in a sample typical of a developmental pediatric clinic.

DESIGN, SETTING, AND PARTICIPANTS The sample consisted of 258 consecutively ascertained
unrelated children with ASD who underwent detailed assessments to define morphology
scores based on the presence of major congenital abnormalities and minor physical
anomalies. The children were recruited between 2008 and 2013 in Newfoundland and
Labrador, Canada. The probands were stratified into 3 groups of increasing morphological
severity: essential, equivocal, and complex (scores of 0-3, 4-5, and �6).

EXPOSURES All probands underwent CMA, with WES performed for 95 proband-parent trios.

MAIN OUTCOMES AND MEASURES The overall molecular diagnostic yield for CMA and WES in a
population-based ASD sample stratified in 3 phenotypic groups.

RESULTS Of 258 probands, 24 (9.3%, 95% CI, 6.1%-13.5%) received a molecular diagnosis
from CMA and 8 of 95 (8.4%, 95% CI, 3.7%-15.9%) from WES. The yields were statistically
different between the morphological groups. Among the children who underwent both CMA
and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8%
(95% CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular
diagnoses from both tests. The combined yield was significantly higher in the complex group
when compared with the essential group (pairwise comparison, P = .002).

Positive Results
Essential
Group Equivocal Group Complex Group

P Value for 3-Group
Comparison

CMA, No./total No. 7/168 4/37 13/53
<.001

% (95% CI) 4.2 (1.7-8.4) 10.8 (3.0-25.4) 24.5 (13.8-38.3)

WES, No./total No. 2/64 2/7 4/24
.02

% (95% CI) 3.1 (0.0-10.8) 28.6 (3.7-71.0) 16.7 (4.7-37.4)

CMA and/or WES, No./total No. 4/64 2/7 9/24
.001

% (95% CI) 6.3 (1.7-15.2) 28.6 (3.7-71.0) 37.5 (18.8-59.4)

CONCLUSIONS AND RELEVANCE Among a heterogeneous sample of children with ASD, the
molecular diagnostic yields of CMA and WES were comparable, and the combined molecular
diagnostic yield was higher in children with more complex morphological phenotypes in comparison
with the children in the essential category. If replicated in additional populations, these findings may
inform appropriate selection of molecular diagnostic testing for children affected by ASD.
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A utism spectrum disorder (ASD) represents a group of
neurodevelopmental conditions of increasing
prevalance.1 The clinical presentation and outcome

vary substantially in ASD.2 In addition to variability in the core
autistic features, many affected individuals have medical, cog-
nitive, and mental health comorbidities.3 There is also evi-
dence that children with ASD have an excess of minor physi-
cal anomalies, which are defined as morphological deviations
present in less than 5% of the population.4,5

The broad phenotype spectrum of ASD is also reflected in
the underlying genetic etiology, which ranges from identifi-
able monogenic syndromes to large chromosome imbalances.6

Chromosomal microarray analysis (CMA) is recommended as
the first-tier genetic test for individuals with ASD7 with a yield
ranging from 7.0%8 to 9.0%.9 Whole-exome sequencing (WES)
on research cohorts of individuals with ASD have highlighted
sequence-level de novo mutations in the etiology of ASD.10,11

Despite these efforts, the molecular diagnostic yield of WES
in a heterogeneous ASD sample is undefined, and CMA data
on these same patients may help inform clinical practice.

The phenotypic complexity of ASD remains a challenge,
and stratification using different phenotypic measures could
help categorize individuals with ASD into subtypes more likely
to benefit from genetic testing.12,13 Using clinical morphology
categorization, Miles et al13 showed that 20% of children with
ASD were defined as “complex,” based on the presence of mul-
tiple minor physical anomalies. There is also limited informa-
tion about how dysmorphology stratification of children with
ASD would be related to the molecular diagnostic yields of ge-
nome-wide tests. Recently it has been shown that subsets of
individuals with ASD are more likely to carry disruptive de novo
and rare copy-number variants (CNVs) and sequence-level
mutations.11,14,15

Here, we report the molecular diagnostic yields for CMA
and WES in a population-based sample of children with ASD
who are typical of those seen in a developmental pediatric
clinic, stratified by clinical phenotype.

Methods
The study sample included children from Newfoundland and
Labrador, Canada, who were consecutively referred from 2008
through 2013 from both of the developmental pediatric clin-
ics in the province that perform multidisciplinary team as-
sessments for ASD. Each assessment was led by a develop-
mental pediatrician and was required for the child to receive
funding for applied behavioral analysis therapy. Each child re-
ceived an ASD diagnosis based on criteria from the Diagnostic
and Statistical Manual of Mental Disorders (Fourth Edition, Text
Revision), which was confirmed by Autism Diagnostic Obser-
vation Schedule and Autism Diagnostic Interview-Revised as-
sessments. The parents or guardians of all children provided
written informed consent, and the study was approved by Me-
morial University’s human research ethics authority. The re-
search numbers assigned to the specific cases in this article and
its Supplement have no relationship to any identifying infor-
mation from the participants and should be considered coded.

Clinical Assessments and Morphology Classification
The family history and medical records of the child (includ-
ing radiology and electroencephalography reports) were re-
viewed. If not already performed, brain magnetic resonance
imaging and IQ testing using the Wechsler Preschool and Pri-
mary Scale of Intelligence III or the Wechsler Abbreviated Scale
of Intelligence were offered. Other screens for birth defects
were arranged based on a standard physical examination of the
child. Morphological examinations were performed by a dys-
morphologist (B.A.F.) and included measurements of height,
weight, and head circumference; measurements of the face,
hands, and feet; and documentation of the presence of minor
physical anomalies (eMethods in the Supplement).16 The lat-
ter are slight morphological deviations present in less than 5%
of the normal population.4 Examples include single palmar
creases and low-set ears.

As per Miles et al,13 each child was assigned a minor physi-
cal anomaly score (1 point for each embryologically unrelated
minor physical anomaly and for each measurement abnor-
mality beyond 2 SD from the mean that was not present in a
parent) (eMethods in the Supplement). Using the scores, the
probands were first classified into 1 of 3 morphological groups
based on physical examination alone: essential (minor physi-
cal anomaly score of 0-3), equivocal (minor physical anomaly
score of 4 or 5), or complex (minor physical anomaly score ≥6).13

Each child was also assigned a major congenital anomaly score
(2 points for each structural brain abnormality or other major
congenital anomaly outside the brain) and a total morphol-
ogy score (minor physical anomaly + major congenital abnor-
mality scores). Using the total morphology score, each child
was again classified as essential, equivocal, or complex with
the same cutoffs (eFigure 1 in the Supplement). The total mor-
phology score classification was correlated with the CMA and
WES analyses. The morphological categories were assigned
prior to genetic testing.

Molecular Genetics
Whole blood for DNA extraction and/or establishing lympho-
blastoid cell line was collected from each proband, available
parents, and siblings. Each proband was tested for fragile X syn-
drome. All girls had MECP2 sequencing, and any child with a
head circumference 3 SD or more above the mean had PTEN
sequencing. If any syndrome was suspected clinically, rel-
evant targeted sequencing was ordered.17

Molecular genetic analyses are summarized in eFigure 1
in the Supplement. Chromosome analysis was performed using
clinical microarray, high-resolution (>1 M probes) research mi-
croarray as previously described,18-21 or both (see eMethods
in the Supplement). Copy-number variants were classified ac-
cording to American College of Medical Genetics and Genom-
ics guidelines.22 For copy-number changes that were classi-
fied as pathogenic or variant-of-unknown-significance-likely
pathogenic, confirmation and parental testing was com-
pleted using quantitative polymerase chain reaction and fluo-
rescence in situ hybridization.23

One hundred probands, for whom DNA samples from both
parents were available, were randomly selected without knowl-
edge of their CNV status. The probands and parents under-
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went WES using the Ion Proton system after exonic amplifi-
cation with the Ion AmpliSeq Exome Kit (Life Technologies).
After quality control, 95 trios were analyzed further (eTable 1
in the Supplement). Rare variants with a frequency of less than
1% in population databases (National Heart, Lung, and Blood
Institute exome server24 and 1000 Genomes25) were priori-
tized to search for putative ASD-relevant variants. Further pri-
oritization was done based on a list of genes previously impli-
cated in ASD or other neurodevelopmental disorders21,26 and
manual curation (eMethods in the Supplement). The variants
were then categorized using the guidelines from the Ameri-
can College of Medical Genetics and Genomics.27 Only vari-
ants categorized as pathogenic or uncertain significance–
likely pathogenic were included in calculation of the molecular
diagnosis yield.

Main Outcomes
The main outcomes measured were the phenotypic differ-
ences in the ASD probands, the yield of molecular diagnosis
from CMA and WES, and the differences in the molecular di-
agnostic yields between the morphological groups.

Statistical Analysis
Comparisons of the differences between the phenotype char-
acteristics and yield of molecular diagnosis were performed
using the Fisher exact test with post hoc pairwise compari-
sons. P values for the pairwise tests were corrected for 3 si-
multaneous comparisons using Holm adjustment. The 95%
confidence intervals of the proportions of molecular diagno-
ses were calculated based on a binomial distribution. Differ-
ences in the age at diagnosis and IQ between the morphologi-
cal groups were tested using 1-way analysis of variance
(ANOVA) followed by T statistics for pairwise comparisons and

Holm correction of the P values. Calculations of the 95% con-
fidence interval and difference in the prevalence of detected
de novo variants between the groups were done using Pois-
son tests. A significance level of α = .05 was used, and all tests
were 2-sided. All 3-group comparisons had estimated power
greater than 0.9. Calculations for the estimated statistical power
are described in the eMethods in the Supplement. All statis-
tical analyses were performed using R software version 3.2.0.

Results
The study sample included 258 consecutively referred chil-
dren for whom written informed consent was obtained
(Table 1). From all the referred families, less than 10% de-
clined to participate. Twenty-seven (10.5%), 143 (55.4%), and
88 (34.1%) children were classified as having Asperger syn-
drome, autistic disorder, or pervasive developmental disorder–
not otherwise specified, respectively. Prior to CMA and WES,
12 of 258 probands (4.7%) were also diagnosed with a clini-
cally distinct syndrome based on physical examination with
or without targeted sequencing. All but 1 of these syndromes
was classified as ASD-related (11/258, 4.3%), including 1 girl with
a PTEN (OMIM 601728) mutation and 1 girl with osteogenesis
imperfecta due to a homozygous WNT1 (OMIM 164820)
mutation28 that probably also contributed to her ASD suscep-
tibility (eTable 2 in the Supplement).29

Based on the categorical approach using the minor physi-
cal anomaly scores (ie, based on dysmorphology examina-
tion alone), 179 (69.4%) of the probands were classified as es-
sential, 51 (19.8%) had equivocal dysmorphology, and 28
(10.9%) probands were complex (Table 2). IQ tests were ad-
ministered to 127 children (49.2%), and a score was obtained

Table 1. Demographics of 258 ASD Probands

Whole Sample
(N = 258)

Categories Based on Minor Physical Anomalies and Birth Defects
[% of Whole Sample]a

Essential
(n = 168 [65.1])

Equivocal
(n = 37 [14.3])

Complex
(n = 53 [20.5])

Age at diagnosis,
mean (SD), yb

4.5 (2.8) 4.1 (2.5) 4.7 (2.5) 5.5 (3.5)c

No. of boys/No. of girls 216/42 140/28 34/3 42/11

Male-female ratio 5.1:1 5.0:1 11.3:1 3.8:1

Examination of parents,
No. (%)

Both 169 (65.5) 115 (68.5) 24 (64.9) 30 (56.6)

One 56 (21.7) 38 (22.6) 5 (13.5) 13 (24.5)

Neither 33 (12.8) 15 (8.9) 8 (21.6) 10 (18.9)

ASD subtype, No. (%)

Asperger syndrome 27 (10.5) 15 (8.9) 7 (18.9) 5 (9.4)

Autistic disorder 143 (55.4) 88 (52.4) 20 (54.6) 32 (66.0)

Pervasive developmental
disorder–not otherwise
specified

88 (34.1) 65 (38.7) 10 (27.0) 11 (24.5)

Genetic testing received,
No. (%)

Clinical microarray 150 (58.1) 84 (50) 29 (78.4) 37 (69.8)

High-resolution research
microarrayd

244 (94.6) 161 (95.8) 32 (86.5) 51 (96.2)

Whole-exome sequencingd 95 (36.8) 64 (38.1) 7 (18.9) 24 (45.3)

Abbreviation: ASD, autism spectrum
disorder.
a Minor physical anomaly + major

congenital abnormality score: 0-3
(essential), 4-5 (equivocal), and �6
(complex).

b Overall statistical difference
between the groups was observed
using analysis of variance (F = 5.0,
P = .008).

c Post hoc comparison with the
essential group P = .006 after Holm
correction.

d After quality control.
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for 109. IQ levels were comparable between the 3 groups
(Table 2). No statistical difference was observed between girls
and boys (eFigure 2A in the Supplement), although distribu-
tion of the scores in girls had a more biphasic representation
than in boys (eFigure 2B). The 3 morphological groups, strati-
fied by minor physical anomaly scores, differed statistically
(3-group comparison using Fisher exact test) in number of chil-
dren with abnormal electroencephalography results based on
44.6% (115/258) of the children (P = .03), structural brain ab-
normalities based on 63.6% (164/258) of the sample (P < .001),
and major congenital anomalies outside the brain (P < .001)
(Table 2), which is consistent with previous findings.13,30 The
pairwise group comparisons showed that children in the com-
plex group differed most in these measures, with enrichment
in the complex group (Table 2). Therefore, in a post hoc set-
ting, the total morphology score, including the presence of
structural brain abnormalities and major congenital anoma-
lies outside the brain, was used for the final morphological cat-
egories (Table 1). Using the total score for categorization, the
probands classified as complex increased from 10.9% to 20.5%
(53/258). We did not observe any statistical difference in the
ASD subtypes or mean IQ scores between the categorical
groups; however, the mean age at diagnosis differed between
the groups (1-way ANOVA, P = .008), with a later mean age at
diagnosis in the complex group (Table 1, eFigure 2 in the
Supplement).

CMA Diagnosis
In the course of this study, all 258 children received some form
of microarray testing. One hundred fifty children (58.1%) re-
ceived clinical microarray testing, of which 125 were per-
formed using oligonucleotide arrays (for the additional 25
children, a low-resolution bacterial artificial chromosome mi-
croarray-based comparative genomic hybridization was per-
formed). High-resolution (>1 M probes) research microarray

genotyping was performed for 94.6% (244/258) of the pro-
bands (Table 1). A total of 24 molecular diagnoses in 24 pro-
bands were identified from all CMA in the 258 probands (9.3%,
95% CI, 6.1%-13.5%) (Table 3 and eTable 3 in the Supple-
ment). The molecular diagnostic yields were 9.8% (95% CI,
6.4%-14.3%, 24/244) in the research microarray sample and
8.0% (95% CI, 3.9%-14.2%, 10/125) in the clinical microarray
sample (Table 3). Of the 125 who underwent clinical microar-
ray testing, 114 also had high-resolution research microarray
data. Three additional clinically relevant CNVs were found in
these children by research microarray analysis. The number
of molecular diagnoses within the defined morphological cat-
egories were analyzed and demonstrated a difference in the
diagnostic yield of CMA across the 3 morphological groups
(Fisher exact test, P < .001) (Table 3).

The complex ASD group had significantly more patho-
genic CNVs (13/53, 24.5%, 95% CI, 13.8%-38.3%) compared with
the essential group (7/168, 4.2%, 95% CI, 1.7%-8.4%; Holm ad-
justed P < .001). For the clinically significant variants where
parental testing was possible, 57.1% (12/21) were de novo events
in the proband (eTable 3 in the Supplement); 11 of 12 of these
de novo events were detected in probands in the complex cat-
egory. Maternal inheritance was observed for 23.8% (5/21) and
paternal inheritance for 19% (4/21) of the variants.

Molecular Diagnoses From WES
After quality control of the WES data (100 trios), 95 probands
were analyzed further. For these, a mean coverage depth of 108×
was achieved; 90.5% of the exonic regions targeted for sequenc-
ing were covered at least 20× (eTable 1 in the Supplement).
Among the 95 probands, 8 children with 9 mutations received
an ASD-related molecular diagnosis (8.4%, 95% CI, 3.7%-
15.9%) (eTable 4 in the Supplement); 2 of these children al-
ready had 1 molecular diagnosis from CMA (cases 3-0075-000
and 3-0095-000, eTable 3 and 4 in the Supplement). The

Table 2. Phenotypic Characteristics of the 258 Probands With Autism Spectrum Disorder

Whole Sample
(N = 258)

P Value for
3-Group
Comparisona

Categories Based on Minor Physical Anomalies Only

Essential
(n = 179)

P Value,
Essential vs
Equivocalb

Equivocal
(n = 51)

P Value,
Equivocal vs
Complexb

Complex
(n = 28)

P Value,
Essential vs
Complexb

IQ, mean (SD) 102 (23) .46c 103 (22) NA 97 (23) NA 106 (25) NA

No. of individuals tested 109d 74 26 8

No. with regressive-onset
ASD (%)e

69 (26.7) .59 50 (27.9) NA 14 (27.5) NA 5 (9.9) NA

No. with macrocephaly (%) 63 (24.4) .16 38 (24.4) NA 15 (21.2) NA 10 (19.6) NA

No. with microcephaly (%) 1 (0.4) .31 0 (0.0) NA 1 (2.0) NA 0 (0.0) NA

No. with abnormal
electroencephalography,
No./Total No. (%)

20/115 (17.4) .03 9/76 (11.8) .91 5/23 (21.7) .85 6/15 (40.0) .046

No. with ≥1 major congenital
anomaly excluding brain (%)

47 (18.2) <.001 21 (11.7) .07 13 (25.5.4) .24 13 (46.4) <.001

No. with ≥1 structural brain
abnormality, No./Total
No. (%)

48/164 (29.3) <.001 17/106 (16.0) .001 18/39 (46.1) .49 13/19 (68.4) <.001

Abbreviations: ASD, autism spectrum disorder; NA, no pairwise comparison was
performed as the primary test was not significant.
a Statistical difference between the 3 groups was tested with Fisher exact test.
b Post hoc pairwise comparisons using Fisher exact test was performed; P values

after Holm correction for 3 simultaneous tests are reported.

c Statistical significance was computed using 1-way analysis of variance.
d Additional 18 individuals were tested, but no scores could be obtained.
e Regressive onset was defined as loss of expressive language with or without

deterioration of social interaction skills prior to age 36 months.
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proportion of probands with a molecular diagnosis from WES
differed between the morphological groups; the yields were
16.7% in the complex group (95% CI, 4.7%-37.4%, 4/24), 28.6%
in the equivocal group (95% CI, 3.7%-71.0%, 2/7), and 3.1% in the
essential group (95% CI 0.0%-10.8%, 2/64; Fisher exact test,
P = 0.02) (Table 3). The mode of inheritance of the 9 mutations
included 6 (66.7%) autosomal dominant (including 3 de novo
mutations), 2 (22.2%) autosomal recessive, and 1 (11.1%)
X-linked recessive.

Sequence-Level De Novo Variants by ASD Dysmorphology
A total of 96 de novo variants were identified and confirmed
in 55 of 95 children from the WES (0-5 de novo mutations per
child, eTable 5 in the Supplement). The number of de novo vari-
ants affecting the coding sequence was weakly correlated with
the total morphology score based on the presence of minor
physical anomalies and major congenital abnormalities (r = 0.2,
P = .03) in the 89 children with blood-derived DNA available
(eMethods and eFigure 3 in the Supplement). A significant in-
crease (Poisson test, P = .02) was observed in the complex
group (1.0 events per child, 95% CI, 0.6-1.5) when compared
with the essential group (0.55 events per child, 95% CI, 0.4-
0.8), indicating a higher burden of de novo events in syn-
dromic children (Figure). The highest prevalence was de-
tected in the girls in the complex group (1.75 events per child,
95% CI, 0.7-3.6), and this was significantly higher than that
among girls from the essential group (0.33 events per child, 95%
CI, 0.07-1.0; Poisson test, P = .01). No significant difference was
observed between girls and boys in any comparison.

Of the 96 de novo variants, 3 were classified as mutations
leading to molecular diagnosis (eTables 4 and 5 in the Supple-
ment). These included 2 loss-of-function mutations in the ASD
and intellectual disability genes ASH1L (c.C7189T, OMIM
607999) and WAC (c.576_585delGCAAGCAACA, OMIM 615049)
and a de novo missense mutation in SCN2A (OMIM 182390).

Inherited Sequence-Level Variants
Six of the 9 mutations leading to molecular diagnosis were in-
herited (66.6%) (eTable 4 in the Supplement). In proband
3-0111-000, a homozygous M390R missense mutation
(c.T1169G) was found in the Bardet-Biedl syndrome 1 (BBS1)
gene (OMIM 209901). At enrollment at age 22 months, he was
given a working diagnosis of an unspecified overgrowth syn-
drome (eTable 2 in the Supplement); however, after clinical re-
evaluation following WES, a diagnosis of atypical Bardet-
Biedl syndrome was confirmed. A maternally inherited
frameshift insertion (c.1106_1107insG) leading to premature
stop codon in TCF12 (OMIM 600480) was detected in pro-
band 3-0459-000, who had equivocal dysmorphology, includ-
ing brachycephaly and an area of left frontal cortical dyspla-
sia. We also detected another presumed loss-of-function
mutation (c.A1295G) in FGFR2 (OMIM 176943).This proband
(3-0211-000) also had equivocal dysmorphology, including
dolichocephaly, deep-set eyes, and a left temporal lobe sep-
tated intraparenchymal cyst; however, there were no fea-
tures of craniosynostosis.

Incidental and Medically Actionable Findings From WES
Incidental or medically actionable findings were reported for
8 of the 95 probands (8.4%) (eTable 6 in the Supplement), all
of which were inherited mutations. Six (6.2%) were deemed
medically actionable, ie, results for which additional base-
line clinical investigations or ongoing screening are expected
to improve outcome with respect to morbidity or mortality.
These 6 results were communicated to the families. The
incidental findings included 3 mutations occurring in SDHB
(OMIM 185470) and CACNA1S (OMIM 114208), causing famil-
ial paragangliomas and malignant hyperthermia, respec-
tively.

Combined Yield of CMA and WES
Nine of 95 probands (9.5%) who underwent WES already had
a molecular diagnosis from CMA; the probands for WES were
selected randomly without knowledge of their CNV status. This
CMA-positive proportion is similar to that of the whole sample
(9.30%) (Table 3). We therefore used this subset of probands
to estimate the proportion of ASD individuals with an identi-
fiable genetic etiology after CMA and WES, which was 15.8%
(95% CI, 9.1%-24.7%, 15/95). Two children received molecu-
lar diagnoses from both tests, both in the complex group
(Table 3). The combined yield in the different morphological
groups was 6.3% (95% CI, 1.7%-15.2%, 4/64) in the essential,
28.6% (95% CI, 3.7%-71.0%, 2/7) in the equivocal, and 37.5%
(95% CI, 18.8%-59.4%, 9/24) in the complex group (Fisher ex-
act test, P = .001) (Table 3). The combined yield was signifi-
cantly higher in the complex group when compared with the
essential group (pairwise comparison, P = .002).

Figure. Prevalence of De Novo Mutations Affecting Coding Sequence
From Whole-Exome Sequencing (WES)
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Prevalence estimates were calculated from de novo variants identified through
WES and confirmed in blood-derived DNA from 89 children and parents (6
children had only cell line–derived DNA available). Differences in the prevalence
between the different phenotypic groups (equivocal excluded) and sexes were
performed using a 2-sided Poisson test. A significant increase was observed in
the complex vs the essential group (P = .02), and the highest prevalance,
detected in the girls in the complex group, was significantly higher than that in
girls from the essential group (P = .01). The total morphology score was the sum
of minor physical anomaly and major congenital abnormality score. Error bars
indicate 95% confidence intervals for the mean prevalence. All putative de novo
variants and pathogenic variants were confirmed using Sanger sequencing.
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Discussion

In a population-based sample of children with ASD, the
molecular diagnostic yield of WES (8.4%) was comparable
with the yield from CMA (9.3%), which is currently recom-
mended as the first-line genetic test for individuals with
ASD.7,31 A combined molecular diagnostic yield of 15.8% was
found in those children who received both tests (Table 3).
The observed yield for clinically relevant CNVs (9.3%) is
slightly higher than earlier reports,8,9 possibly due to the
higher-resolution microarrays used in our study and also a
better understanding of rare variants affecting new candi-
date genes.32,33 In contrast to CMA, WES in ASD is still
largely in the research domain.10,11 Some clinical WES stud-
ies have provided molecular diagnostic estimates for smaller
autism subgroups with additional medical conditions, and
these have varied (0%-45.0%).34-36

In the current study, we have demonstrated differences
related to morphological stratification of ASD probands
based on clinical examination. Our data suggest that medi-
cal evaluation of ASD children may help identify popula-
tions more likely to achieve a molecular diagnosis with
genetic testing. The morphological stratification was related
to the molecular diagnostic yields, which were higher for
both CMA and WES when the analysis was restricted to the
subset of individuals with complex phenotypic presenta-
tions. Based on analysis of the combined diagnostic yield of
CMA and WES, we estimate that more than 35% of ASD chil-
dren with additional medical and dysmorphology features
might be able to receive a molecular diagnosis. In contrast,
only 6.0% of ASD children without syndromic features
received a molecular diagnosis in our study (Table 3). If chil-
dren with essential ASD who have a comorbid intellectual
disability are excluded, the molecular diagnostic yield may
be even lower. In our analysis, 2 of 4 children in the essen-
tial group who received molecular diagnosis by either CMA
or WES had comorbid intellectual disability (eTable 7 in the
Supplement). The data presented here also highlight
improvements in designating molecular diagnoses for chil-
dren with ASD that have occurred over the past 10 years. In
2005, Miles et al13 published their stratification of 260 chil-
dren with autistic disorder into 3 morphological groups and
showed that the complex designation had 87% specificity
for predicting poor outcome. In their analysis, 4.2% (11/260
children) had an identifiable genetic syndrome by clinical
examination and chromosome analysis.13 We show a more
than 3.5-fold increase in the molecular diagnostic yield
(15.8%) compared with the results in 2005. When the com-
parison was restricted to the complex groups, the diagnostic
yields were 23.9% (11/46) in Miles et al13 and 37.5% in our
study (Table 3).

It seems likely that genetic testing of children with ASD
will continue to increase. In a survey of parental interest in
ASD genetic testing,37 80% of parents indicated that they
would want a sibling younger than 2 years tested to identify
ASD-risk mutations even if the test could not confirm or rule
out the diagnosis.38 For some children with positive genetic

test results, treatment plans targeting ASD-associated medi-
cal conditions can be offered.35,39-41 Examples include
screening for cardiac defects and maturity-onset diabetes of
the young in probands with 1q21.1 and 17q12 deletion syn-
dromes, respectively, and close monitoring to avoid the
development of obesity in those with 16p11.2 microdeletions.
We observed that the age at diagnosis with ASD was signifi-
cantly older for the complex group (Table 1), which suggests
that health care professionals may need to be particularly
vigilant in monitoring children with suspected or diagnosed
morphological syndromes for behavioral signs of ASD.42

Our study illustrates the genetic and phenotypic hetero-
geneity of ASD (eTables 4, 5, and 7 in the Supplement).21,43-45

The sample of 95 probands had contributions from inherited
and de novo mutations found by WES in 9 ASD susceptibility
genes, some of which are known to have variable expressiv-
ity and penetrance. Four of these were loss-of-function
mutations in autosomal-dominant genes. For instance, muta-
tions in TCF12 have been observed in individuals with cra-
niosynostosis; however, neurodevelopmental disorders rang-
ing from mild learning disability to severe autism are
known.46-48 Genetic heterogeneity is also present within
families45; for example, proband 3-0027-00 had a maternally
inherited loss-of-function mutation in the ASD susceptibility
gene, SLITRK5, which was absent in his brother with ASD. In
accordance with earlier studies,21,49 our data support the
conclusion that ASD in girls may be genetically different than
ASD in boys, as evidenced by enrichment of girls in the com-
plex group (Table 1), slightly different distribution of IQ
scores (eFigure 2 in the Supplement), and higher prevalence
of de novo variants (eTable 5 in the Supplement).

Limitations of our study include a relatively small
sample size as well as possible ascertainment bias related to
clinical differences that may have existed between families
who consented and declined (less than 10% declined to par-
ticipate in the study after diagnosis in the developmental
pediatric clinics). Only 63.5% of the children had brain mag-
netic resonance imaging, which may have skewed our final
morphological classification in favor of the essential group,
and only 49.2% (127/258) of the study sample underwent IQ
testing. A major limitation of the study is that only 36.8%
(95/258) of the children were included in the WES analysis,
which could have led to an unmeasured confounding effect
on the results. In addition, there are technical and interpre-
tation limitations to the identification of variants, which
were classified as molecular diagnoses. Whole-exome
sequencing does not provide equal coverage for all the cod-
ing sequence regions26,50 and lacks sensitivity and specific-
ity for detection of structural variants.45 Given this and the
resolution limits of CMA, the inability to detect the majority
of larger indels (>20 base pairs) and smaller CNVs (<20 kilo-
bases) is also a limitation. It seems likely that whole-
genome sequencing will become the primary genetic test
for ASD because all classes of genetic variation might be
detected in 1 experiment.26,45,50 Genetic counseling for
ASD-related genomic mutations, especially for rare
sequence-level variants, is often challenging because of
their variable expressivity and incomplete penetrance.17
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Conclusions

Among a heterogeneous sample of children with ASD, the di-
agnostic yields of CMA and WES were comparable, and the com-

bined diagnostic yield was higher among children with more
complex morphological phenotypes in comparison with the chil-
dren in the essential category. If replicated in additional popu-
lations, these findings may inform appropriate selection of mo-
lecular diagnostic testing for children affected by ASD.
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