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Intuitive Control of a Powered Prosthetic Leg
During Ambulation
A Randomized Clinical Trial
Levi J. Hargrove, PhD; Aaron J. Young, PhD; Ann M. Simon, PhD; Nicholas P. Fey, PhD; Robert D. Lipschutz, CP;
Suzanne B. Finucane, MS; Elizabeth G. Halsne, CPO; Kimberly A. Ingraham, BS; Todd A. Kuiken, MD, PhD

IMPORTANCE Some patients with lower leg amputations may be candidates for motorized
prosthetic limbs. Optimal control of such devices requires accurate classification of the
patient’s ambulation mode (eg, on level ground or ascending stairs) and natural transitions
between different ambulation modes.

OBJECTIVE To determine the effect of including electromyographic (EMG) data and historical
information from prior gait strides in a real-time control system for a powered prosthetic leg
capable of level-ground walking, stair ascent and descent, ramp ascent and descent, and
natural transitions between these ambulation modes.

DESIGN, SETTING, AND PARTICIPANTS Blinded, randomized crossover clinical trial conducted
between August 2012 and November 2013 in a research laboratory at the Rehabilitation
Institute of Chicago. Participants were 7 patients with unilateral above-knee (n = 6) or
knee-disarticulation (n = 1) amputations. All patients were capable of ambulation
within their home and community using a passive prosthesis (ie, one that does not provide
external power).

INTERVENTIONS Electrodes were placed over 9 residual limb muscles and EMG signals were
recorded as patients ambulated and completed 20 circuit trials involving level-ground
walking, ramp ascent and descent, and stair ascent and descent. Data were acquired
simultaneously from 13 mechanical sensors embedded on the prosthesis. Two real-time
pattern recognition algorithms, using either (1) mechanical sensor data alone or
(2) mechanical sensor data in combination with EMG data and historical information from
earlier in the gait cycle, were evaluated. The order in which patients used each configuration
was randomized (1:1 blocked randomization) and double-blinded so patients and
experimenters did not know which control configuration was being used.

MAIN OUTCOMES AND MEASURES The main outcome of the study was classification error for
each real-time control system. Classification error is defined as the percentage of steps
incorrectly predicted by the control system.

RESULTS Including EMG signals and historical information in the real-time control system
resulted in significantly lower classification error (mean, 7.9% [95% CI, 6.1%-9.7%]) across a
mean of 683 steps (range, 640-756 steps) compared with using mechanical sensor data only
(mean, 14.1% [95% CI, 9.3%-18.9%]) across a mean of 692 steps (range, 631-775 steps), with
a mean difference between groups of 6.2% (95% CI, 2.7%-9.7%] (P = .01).

CONCLUSIONS AND RELEVANCE In this study of 7 patients with lower limb amputations,
inclusion of EMG signals and temporal gait information reduced classification error across
ambulation modes and during transitions between ambulation modes. These preliminary
findings, if confirmed, have the potential to improve the control of powered leg prostheses.

JAMA. 2015;313(22):2244-2252. doi:10.1001/jama.2015.4527

Author Video Interview and
JAMA Report Video at
jama.com

Related article page 2209

Video and Supplemental
content at jama.com

CME Quiz at
jamanetworkcme.com and
CME Questions page 2280

Author Affiliations: Center for Bionic
Medicine, Rehabilitation Institute of
Chicago, Chicago, Illinois (Hargrove,
Young, Simon, Fey, Lipschutz,
Finucane, Halsne, Ingraham, Kuiken);
Department of Physical Medicine and
Rehabilitation, Northwestern
University, Chicago, Illinois (Hargrove,
Simon, Fey, Lipschutz, Kuiken);
Department of Biomedical
Engineering, Northwestern
University, Evanston, Illinois
(Hargrove, Young, Kuiken).

Corresponding Author: Levi
Hargrove, PhD, Center for Bionic
Medicine, Rehabilitation Institute
of Chicago, 345 E Superior St,
Room 1309, Chicago, IL 60611
(l-hargrove@northwestern.edu).

Research

Original Investigation

2244 (Reprinted) jama.com



Confidential. Do not distribute. Pre-embargo material.

M ajor lower limb amputation due to trauma or
cancer1 affected an estimated 115 000 patients in
the United States in 2005 and accounted for up to

76% of amputations sustained by US service personnel from
2001 to 2011.2 Most prosthetic lower limbs are mechanically
passive (ie, cannot provide power) and so do not restore full
function. Leg prostheses that provide power are becoming
available; however, different ambulation modes—such as
level-ground walking, ramp ascent and descent, and stair
ascent and descent—require fundamentally different control
sequences for operating powered prosthetic limbs. Transi-
tioning currently available powered limbs between different
ambulation modes requires patients to slow down, stop,
press buttons on an electronic key fob, or perform unrelated
body movements (eg, exagerrated hip extension; rocking
forward and backward on the prosthesis).3,4 To maximize
benefit from these devices and ensure patient safety, control
systems must automatically identify which ambulation
mode the patient is using and provide the correct prosthesis
response.

Electromyographic (EMG) signals—electrical signals gen-
erated during muscle contractions—are routinely used to con-
trol powered arm prostheses.5 Advanced pattern recognition
algorithms can decode the unique EMG signal patterns gen-
erated by multiple muscles during specific movements, thus
determining user intent and providing intuitive prosthesis con-
trol. EMG signal patterns from leg muscles are highly variable
during ambulation,6 but they provide information that may
complement data from the mechanical sensors on the
prosthesis.7,8

The objective of this study was to assess the effect of
including EMG data from residual muscles with mechanical
sensor data in a real-time control system on ambulation per-
formance, using a powered prosthetic leg capable of level-
ground walking, stair ascent and descent, ramp ascent and
descent, and natural transitions between these ambulation
modes.

Methods
Patients provided written informed consent for participation
in this study, which was approved by the Northwestern Uni-
versity institutional review board and conducted from Au-
gust 2012 to November 2013 at the Rehabilitation Institute of
Chicago. A convenience sample was recruited from patients
who met the following eligibility criteria: (1) a unilateral above-
knee or knee-disarticulation amputation and (2) ability to am-
bulate with a prosthesis, consistent with the Centers for Medi-
care & Medicaid Services K3- or K4-level designation9 (ie, using
their passive prostheses they were able to ambulate freely in
a variety of environments within the community, able to tra-
verse most environmental barriers, and had the potential for
active ambulation).

For each patient, surface EMG was recorded from 9 re-
sidual limb muscles (semitendinosus, biceps femoris, tensor
fasciae latae, rectus femoris, vastus lateralis, vastus medialis,
sartorius, adductor magnus, and gracilis) (Figure 1). These

muscles normally contract during ambulation, and, although
the signals are complex, pattern recognition may be used to
extract important information relating to how the person in-
tends to move. Patients were fitted with a powered knee-
ankle prosthesis designed by the Center for Intelligent Mecha-
tronics at Vanderbilt University.10 Thirteen mechanical
sensors—including a 6-axis inertial measurement unit, a
vertical-axis load cell, and sensors that provided the posi-
tion, velocity, and torque of the knee and ankle joints—are in-
tegrated into the device. The mechanical response of the pros-
thesis was adjusted as necessary for each patient during several
sessions, before the experiment, in which the patient learned
to use the prosthesis.11

Ambulation Mode Training Data Collection
Each patient used the knee-ankle prosthesis to complete an
experiment comprising 20 circuit trials—involving level-
ground walking, ramp ascent and descent, and stair ascent and
descent (Figure 2). These data were intended for use by a pat-
tern recognition algorithm to learn how to interpret each type
of signal pattern. Transitions between ambulation modes were
controlled by a member of the research team using a remote
control: transitions between level-ground walking and stair as-
cent were triggered at toe-off (ie, the initiation of swing phase);
transitions between level-ground walking and stair descent,
ramp descent, and ramp ascent were triggered at heel contact
(ie, the initiation of stance phase) (Video 1). Data from 20 tran-
sitions between level-ground walking and each of the other 4
locomotion modes were collected. Additional level-ground
walking trials that included variable speeds (fast and slow),
starting and stopping, and turning were performed to obtain
a rich training data set for level-ground walking.

Control System Training
Thirteen mechanical signals and 9 EMG signals (Figure 1;
eFigure in the Supplement) were processed and used to cre-
ate and test pattern recognition systems for each patient.
Because the signals are complex, we tested 2 pattern recog-
nition algorithms to interpret the data: linear discriminant
analysis (LDA) and a dynamic Bayesian network (DBN). LDA
uses a weighted average of an instantaneous snapshot of the
sensors to predict how the person is ambulating. The DBN is
able to interpret the trajectories, rather than an instanta-
neous snapshot of the sensors, which is beneficial because
gait has stereotypical trajectories that are consistent within
an ambulation mode but different across ambulation modes.
Four different control systems could be configured: (1) data
from only prosthesis mechanical sensors used with an LDA
pattern recognition system (Mech + LDA), (2) data from only
mechanical sensors used with a DBN system (Mech + DBN),
(3) data from both mechanical and EMG sensors used with
an LDA system (Mech + EMG + LDA), and (4) data from both
mechanical and EMG sensors used with a DBN system
(Mech + EMG + DBN).

Classification Error
The primary performance outcome of this study was classifi-
cation error—the percentage of steps incorrectly identified by
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the control system while patients walked in different ambu-
lation modes (eg, level-ground walking or stair ascent) and tran-
sitioned between these modes. Classification error can be cal-
culated offline, where the predicted mode does not actually
affect the control, or in real time, when the prediction changes
the behavior of the prosthetic leg and consequently influ-
ences the user.

Offline Classification Error
Offline classification error can provide insight into how well a
pattern recognition system will perform when it is used in real
time to control the prosthesis. All errors generated in the
offline trials are strictly attributable to the inability of the pat-
tern algorithms to predict the correct mode. To determine clas-
sification error, each system was trained using sensor data
(Mech or Mech + EMG) from all the trials except one. Data from
the remaining trial were used to test the system, ie, to deter-
mine the ability of the trained control system to correctly iden-
tify ambulation mode and mode transitions in that trial. This
was repeated 19 times, such that each of the trials served as

the test trial once. The average classification error for all trials
of each control system was then calculated.

Evaluation of Real-Time Control
Only the Mech + LDA and Mech + EMG + DBN control sys-
tem configurations were evaluated in real time. The
Mech + LDA control system was evaluated because it was the
only real-time pattern recognition control system for a pow-
ered leg prosthesis previously reported in the literature12; the
Mech + EMG + DBN control system was evaluated because we
hypothesized it would provide the best performance of the 4
systems under consideration. Evaluating these 2 conditions re-
quired 4 to 6 hours of ambulation, and many of the patients
would have had difficulty completing 2 additional configura-
tions because of fatigue. Comparison between these systems
was selected a priori.

For each online configuration, patients completed 10
additional ambulation circuits and level-ground walking
trials. In these trials, transitions between ambulation modes
were performed by the control system, which predicted the

Figure 1. Electromyographic (EMG) and Mechanical Sensor Placement and Example EMG Data Used for Intuitive Prosthetic Leg Control
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ambulation mode intended by the patient at each toe-off
and heel-contact event and actively changed the mechani-
cal response of the powered knee-ankle prosthesis in real
time, based on this prediction. An experimenter labeled the
data with the patient’s intended ambulation mode. The
order in which patients used each configuration was ran-
domized (1:1 blocked randomization using a computerized
random number generator) and double-blinded such that
the patient and the research team members who provided
instructions to the patients did not know which control con-
figuration was being used.

After the ambulation circuits were completed, real-time
classification error was determined by comparing the ambu-
lation mode predicted by the control system, with the correct
mode identified by the ambulation mode label assigned by a
member of the research team observing the experiment. Ad-
ditionally, the classification error for steps after a correct or an
incorrect classification was calculated for both configura-
tions. The relationship between the real-time classification
error after a correct classification and the offline classifica-
tion error (calculated as described in the previous section) was
determined using a correlation analysis. Offline and real-
time performance was also compared with a previously pub-
lished case study with a male patient (31 years old, 3 years
postamputation, 1.8 m tall, 77.1 kg) who had targeted muscle
reinnervation (TMR) surgery to restore EMG signals corre-
sponding to below-knee muscles following a traumatic right
knee disarticulation amputation.8

A post hoc exploratory analysis was performed after data
collection was completed. Classification errors were grouped
into 3 categories according to the patient’s subjective assess-
ment of the effect of the control system on ambulation:
(1) whether classification errors were unnoticeable to the pa-
tient, (2) whether errors resulted in a moderate perturbation
that was noticeable but did not impede ambulation, and
(3) whether errors caused a substantial perturbation that re-
quired the patient to stop and an experimenter to manually
correct the error by safely transitioning the prosthetic leg to
level-ground walking using a remote control. This extension
of the error categories proposed by Zhang et al13 was per-
formed to evaluate the clinical effects of different classifica-
tion errors.

Statistical Analyses
Based on a power analysis completed on closely related
data7 with type-1 error (α) set to .05, type-2 error (β) set to
.20, and a minimally important difference of 5% classifica-
tion error, 7 patients were recruited. An offline classification
error rate of approximately 7% was expected.7 Offline classi-
fication errors from each of the 4 control configurations
were compared in a 1-way analysis of variance performed
with MiniTab version 16 and using a post hoc Bonferroni
correction to determine pairwise differences between con-
ditions (α = .05). Differences between the overall error rates
of the 2 conditions tested in real time were evaluated using
a 2-sided paired t test (α = .05). For the 2 real-time condi-

Figure 2. Ambulation Modes and Transitions Investigated in the Study
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tions, 2-sided paired t tests (α = .05) were conducted on the
3 categories of error based on the effect of the perturbation
(unnoticeable, moderate, substantial). A Pearson correlation
test was performed to quantify the relationship between
offline error and real-time classification error to determine
the Pearson correlation coefficient (r)14 and its associated
P value (α = .05).

Results
Patient Recruitment
Six patients with above-knee amputations and 1 patient with
a knee disarticulation amputation were enrolled in the study
(Figure 3, Table). Five patients used a suction socket, 1 used a
locking liner, and 1 used a belt suspension system. All pa-
tients were classified as community ambulators (Centers for
Medicare & Medicaid Services designated K3 or K4 level).
Among the 7 study participants, age ranged from 21 to 65 years,
weight ranged from 62 to 112 kg, and height ranged from 1.60
to 1.87 m.

Offline Classification Error
During the offline portion of the experiment, patients took a
mean of 1215 steps (range, 1104-1427). Inclusion of EMG sig-
nals and time history information (Mech + EMG + DBN) re-
sulted in the most accurate control system and significantly
(P < .001) reduced mean classification error from 6.3% (95%
CI, 5.5%-7.1%) to 2.9% (95% CI, 2.5%-3.3%) compared with using
mechanical sensors only (Mech + LDA) (Figure 4). The
Mech + DBN system had a mean error of 4.2% (95% CI, 3.7%-
4.7%) and the Mech + EMG + LDA system had a mean error of
3.8% (95% CI, 2.8%-4.8%]; these errors were significantly lower
than for the Mech + LDA system (P = .002 and P < .001, re-
spectively).

Real-Time Classification Error
All patients successfully completed the real-time ambulation cir-
cuit trials using the powered knee-ankle prosthesis
(Video 2). Patients took a mean of 692 steps (range, 631-775) to
complete real-time ambulation circuits using the Mech + LDA
system and a mean of 683 steps (range, 640-756) to complete
real-time ambulation circuits using the Mech + EMG + DBN sys-
tem (Figure 4). Compared with the baseline Mech + LDA con-
figuration, adding EMG signals and time-history information
(Mech + EMG + DBN) significantly (P = .01) reduced overall real-
time mean error rates from 14.1% (95% CI, 9.3%-18.9%) to 7.9%
(95% CI, 6.1%-9.7%) and median error rates from 14.0% (inter-
quartile range, 6.1%-21.8%) to 7.6% (interquartile range, 6.0%-
9.2%) (Figure 4). When steps were correctly classified, the mean
error for the next step was 10.4% (95% CI, 7.7%-13.1%) for the
Mech + LDA configuration and 5.7% (95% CI, 4.4%-7.0%) for
the Mech + EMG + DBN configuration. In contrast, after a clas-
sification error, the mean classification error for the subse-
quent step was 26.5% (95% CI, 14.6%-38.4%) for the Mech + LDA
configuration and 24.3% (95% CI, 15.0%-33.6%) for the
Mech + EMG + DBN configuration. For both real-time control
conditions, errors were reduced when the previous step was cor-
rectly classified. When a step was inaccurately classified, the er-
ror was propagated such that subsequent steps were more likely
to be classified incorrectly.

Effect of Classification Errors on Real-Time Ambulation
Classification errors that occurred between level-ground walk-
ing and ramp ascent were always unnoticeable to the patient
(Video 3). Classification errors between level-ground walking

Figure 3. Study Participation for Intuitive Control of a Powered
Prosthetic Leg During Ambulation
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Table. Patients Enrolled in Study

Patient
No. Age, y Sex

Time Since
Amputation, y

Weight With
Prosthesis, kg Height, m Etiology Amputation Level Suspension Typea

Previous Powered
Prosthesis
Experience, h

P1 56 Male 43 81.7 1.80 Left traumatic Above-knee Suction 16

P2 65 Male 38 90.0 1.75 Right traumatic Above-knee Suction 35

P3 21 Female 6 61.7 1.60 Left sarcoma Above-knee Suction 11

P4 50 Male 16 87.7 1.87 Right traumatic Above-knee Liner-lock 14

P5 52 Male 38 112.3 1.86 Left traumatic Above-knee Sock and belt 17

P6 43 Male 18 100.2 1.82 Left traumatic Above-knee Suction 8

P7 28 Male 15 90.7 1.87 Left sarcoma Knee disarticulation Suction 11
a Method by which the prosthesis is “suspended” from (ie, attached to) the residual limb.
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and ramp or stair descent caused moderate perturbations that
were noticeable and slightly disruptive to the patient but did
not cause the patient to stop ambulating or to use the safety
harness. Any classification error while ambulating on stairs,
or any step that was classified as stair ascent while the pa-
tient was not climbing stairs, caused a substantial perturba-
tion such that the patient had to stop ambulating. The
Mech + EMG + DBN configuration significantly (P = .01)
reduced the number of classification errors that caused mod-
erate perturbations compared with only the Mech + LDA
configuration, with a mean difference of 4.5% (95% CI, 2.0%-
7.0%) (Figure 5).

Comparison of Offline and Real-Time Classification Error
The Pearson correlation coefficient between offline and real-
time error rates for the 2 configurations tested in real time
(Mech + LDA and Mech + EMG + DBN) was 0.6 (P = .02), indi-
cating that offline error rate was significantly associated with
real-time classification error (Figure 6). All patients reported
that they preferred the Mech + EMG + DBN system. Using this
system, patients indicated that they were more confident when
ambulating and appreciated the reduced number of notice-
able perturbations, resulting from fewer classification errors.

Effect of TMR Surgery on Prediction of Ambulation Mode
In our previous study, the offline mean classification error for a
kneedisarticulationpatientafterTMRsurgery8 waswithin1stan-
dard deviation of the patients who participated in this study and
didnothaveTMRsurgery(Mech + LDA,5.9%;Mech + DBN,4.8%;
Mech + EMG + LDA, 2.1%; and Mech + EMG + DBN, 1.8%). The
real-time performance of the patient with TMR using only me-
chanical sensors (Mech + LDA) had a mean error of 12.9%, which
was comparable with the mean error of 14.1% for the patients in
this study without TMR. The mean error for the patient with TMR
decreased to 1.8% using the real-time Mech + EMG + DBN

system, which was markedly (2.5 SDs) below the mean error rates
(7.9%) for patients without TMR in this study.

Discussion
This preliminary study is, to our knowledge, the first clinical
evaluation of the ability of individuals with above-knee am-
putations to control a powered knee-ankle prosthesis across
different ambulation modes and the first time EMG signals have
been incorporated into a real-time control system for a pow-
ered lower limb prosthesis. We used pattern recognition
algorithms that incorporated information from many differ-
ent sensor sources to predict ambulation mode for the next
stride. Inclusion of EMG and time-history information
(Mech + EMG + DBN) reduced classification errors by 6.2%
(P = .01). This control system allowed for automatic, natural
transitions between ambulation modes, in contrast to cur-
rent control systems that require the patient to use an elec-
tronic key fob or perform a set of exaggerated movements to
transition between modes.3,4

Previous work has shown that EMG patterns can be used
to predict ambulation modes in a passive prosthesis.6,7 How-
ever, in those studies, the patient had to make abnormal gait
adaptations, such as ascending stairs using a step-by-step
gait pattern. We have previously shown that EMG pattern rec-
ognition techniques can be used to predict ambulation modes
of individuals using a powered knee-ankle prosthesis,15 but in
that study the experimenter controlled the prosthesis re-
motely. In the present study, use of pattern recognition in real
time enabled a true test of control system performance and
clinical feedback from patients on their experience of the con-
trol systems.

The offline performances of the patient with TMR de-
scribed in a previous study8 were consistent with those of the

Figure 4. Mean Offline and Real-Time Classification Error for All Control Systems
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A 1-way analysis of variance using a post hoc Bonferroni correction revealed a
significant reduction in offline classification error between the control
system using mechanical sensors only (Mech + linear discriminant
analysis [LDA]) and the other 3 control systems (Mech + dynamic Bayesian
Network [DBN], P = .002; Mech + electromyographic [EMG] + LDA, P < .001;

Mech + EMG + DBN, P < .001). Individual data points for each patient indicate
the mean offline error across all ambulation modes and all steps (P1, 1211 steps;
P2, 1210 steps; P3, 1427 steps, P4, 1144 steps; P5, 1182 steps; P6, 1230 steps; P7,
1104 steps) for each control system. Y-axes shown in blue indicate range from
0% to 8%.
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patients in this study, although the patient with TMR did have
markedly lower error rates than patients without TMR when
using the Mech + EMG + DBN system in real time. It is likely
that by transferring severed nerves to functional muscle, TMR
enabled access to additional EMG control information in-
tended for the amputated distal limb, which enabled im-
proved control of the prosthesis. However, the patient with
TMR in the previous reports had more experience walking with
the powered knee-ankle prosthesis than all but 1 of the pa-
tients without TMR in this study, which could also have af-
fected this result. Even if TMR only marginally improves con-
trol of a powered lower limb prosthesis during ambulation, the
previous report describing 1 patient with TMR suggested that
TMR improved intent recognition for non–weight-bearing
movements such as repositioning the knee and ankle while
seated and preparing to stand.8 A laboratory investigation in
an animal model and retrospective analysis of recipients of up-
per limb TMR suggested that TMR may also be useful for am-
putation-related neuromas.16,17

Studies evaluating upper limb pattern recognition con-
trol strategies have shown only a weak correlation between
offline error rates and real-time control capability.18,19 How-

ever, we found a significant correlation between the offline and
real-time control error rates during ambulation for the lower
limb. The offline error rates were lower than the real-time er-
ror rates primarily because steps after a real-time classifica-
tion error generated data patterns not present in the training
data (ie, training data only contained patterns from when the
patient was ambulating correctly). Additionally, because the
real-time experiment was conducted after the training ses-
sion, factors such as fatigue or sweating may have caused sig-
nal changes that resulted in additional classification errors.
Many previous offline studies showed promising results when
using pattern recognition to determine user intent during
ambulation6,7,20,21; the results of this study extend these stud-
ies to real-time control of a powered leg.

The primary performance metric used in this study was
classification error. Patient safety is of paramount impor-
tance, and classification errors occurring during ambulation
could cause patients to stumble or fall; an ideal control sys-
tem would be error free. The powered knee-ankle prosthesis
uses an impedance control model to generate the knee and
ankle torques,22 and the impedance parameters are similar
for some ambulation modes. Thus, as shown in post hoc

Figure 5. Mean Real-Time Classification Errors Grouped by the Perturbation to the Patient
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33 667 4.95 32 678 4.72 0.234

137 631 21.71 82 675 12.15 9.565
82 709 11.57 34 721 4.72 6.856
40 694 5.76 11 649 1.69 4.077

Substantial perturbation
Patient No.

Mean (95% CI)

13 716 1.82 9 664 1.36 0.461
1 649 0.15 1 640 0.16 -0.012
3 775 0.39 7 756 0.93 -0.543
3 667 0.45 5 678 0.74 -0.294
3 631 0.48 3 675 0.44 0.045
2 709 0.28 2 721 0.28 06

16 694 2.31 6 649 0.92 1.397

3.54 (1.75 to 5.34)

9.71 (4.95 to 14.49)

0.84 (0.21 to 1.47)

2.05 (1.15 to 2.95)

5.19 (2.59 to 7.79)

0.69 (0.39 to 1.00)

1.50 (0.11 to 2.88)

4.52 (2.01 to 7.03)

0.15 (-0.31 to 0.61)

Decreased
Error With

Mech + LDA

Decreased Error
With Mech +
EMG + DBN

A post hoc test conducted to determine pairwise differences between the 2
control systems for each of the perturbation types revealed that inclusion of
electromyographic (EMG) signals and time-history information

(Mech + EMG + dynamic Bayesian network [DBN]) significantly (P = .01)
reduced classification errors that caused moderate perturbations compared
with only using mechanical sensor data (Mech + linear discriminant analysis).
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analyses, many classification errors, such as those between
walking and ramp ascent, did not produce noticeable distur-
bances to the patient, resulting in a relatively forgiving con-
trol system (Figure 4). Other classification errors caused
moderate disturbances that the patient noticed but could tol-
erate and continue walking, such as those occurring between
walking and ramp descent (Video 3). In addition, incorrect
classification of any step as stair ascent caused substantial

perturbations from which it was difficult for the patient to
safely recover without stopping. Another particularly critical
transition was between level-ground walking and stair
descent, which required patients to stop and reattempt the
stairs; the Mech + EMG + DBN system performed with 0%
error for this transition, whereas the Mech + LDA system had
5.4% error. Further control improvements could be achieved
by collection of a more robust training data set, use of addi-
tional sensors, or implementation of a stumble-recovery
mode. It may also be possible to statistically weight the clas-
sifier to avoid the most substantial errors.

This study was preliminary and had limitations that
should be considered. The sample size was small, and
experiments were only performed by patients who could
already ambulate freely in a variety of environments. Addi-
tional work needs to be completed to determine if patients
with more limited ambulation capabilities could benefit
from the proposed system. The control system testing
was completed in the laboratory over a short time frame
(1 experimental session) rather than in a real-world setting,
which would have less controlled variables. Additional stud-
ies are required to determine the system performance over
multiple days or months. Incorporation of EMG electrodes
into the patient’s socket is nontrivial, and care must be taken
so that the electrodes do not interfere with residual limb
skin health. Last, system configuration must be further sim-
plified so that clinicians can comfortably fit the device after
receiving a reasonable amount of training.

Conclusions
In this study of 7 patients with lower limb amputations, inclu-
sion of EMG signals and temporal gait information reduced clas-
sification error across ambulation modes and during transi-
tions between ambulation modes. These preliminary findings,
if confirmed, have the potential to improve the control of pow-
ered leg prostheses.
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Figure 6. Relationship of Offline Error to Real-Time Error and a Best-Fit
Line of the Pooled Data
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Blue data points represent individual patients using the Mech + linear
discriminant analysis (LDA) system and green data points represent individual
patients using the electromyographic (EMG) + Mech + dynamic Bayesian
network (DBN) system. Each point for each patient indicates the mean error
across all ambulation modes and all steps for the offline Mech + LDA and
Mech + EMG + DBN classification error rate (P1, 1211 steps; P2, 1210 steps;
P3, 1427 steps; P4, 1144 steps; P5, 1182 steps; P6, 1230 steps; P7, 1104 steps;
targeted muscle reinnervation [TMR], 1240 steps), the real-time Mech + LDA
classification error rate (P1, 716 steps; P2, 649 steps; P3, 775 steps; P4, 667
steps; P5, 631 steps; P6, 709 steps; P7, 694 steps; TMR, 719 steps) and
real-time Mech + EMG + DBN classification error rate (P1, 664 steps; P2, 640
steps; P3, 756 steps; P4, 678 steps; P5, 675 steps; P6, 721 steps; P7, 649 steps;
TMR, 660 steps). A Pearson correlation test was run to quantify the relationship
between offline and real-time classification error to determine the Pearson
correlation coefficient14 and its associated P value (α = .05).
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